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1. Abstract    

Reversibility constraints are one aspect of genome-scale metabolic models that has 
received significant attention recently. This study explores the impact of complete 
removal of reversibility constraints on the gene essentiality and growth phenotype 
predictions generated using three published genome-scale metabolic models: the 
iJR904, the iAF1260, and the iBsu1103. In all three models, the accuracy in pre-
dicting essential genes declined significantly with the relaxation of reversibility 
constraints, while the accuracy in predicting nonessential genes increased only for 
the iJR904 and iAF1260 model. Additionally, the number of inactive reactions in 
all models declined substantially with the relaxation of the reversibility con-
straints. This study rapidly reveals the extent to which the reversibility constraints 
included in a metabolic model have been optimized, and it indicates those incor-
rect model predictions that may be repaired and those correct model predictions 
that may be broken by increasing the number of reversible reactions in a model. 

2. Introduction 

In recent years, Flux Balance Analysis (FBA) and genome-scale metabolic models 
are increasingly being used as a means of predicting the metabolic capabilities of 
an organism based on knowledge of the biochemical interactions taking place in 
the organism’s metabolic pathways. These models are capable of predicting essen-
tial genes, growth phenotypes, culture conditions, and metabolic engineering strat-
egies [1]. Additionally, the number of models available for analysis is rapidly 
growing. Currently, models have been published for over 20 microorganisms [2], 
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with new high-throughput reconstruction methods emerging capable of producing 
thousands of draft models in a single year [3]. 

One aspect of genome-scale metabolic models that has received significant atten-
tion recently is the reversibility constraints governing the direction(s) of operation 
for all reactions included in the model. In the first genome-scale metabolic mod-
els, these constraints were based largely on data available in biochemical databas-
es and knowledge of pathway directionality in well-known metabolic subsystems 
(e.g. glycolysis) [4, 5]. More recently, methods have emerged for predicting reac-
tion reversibility/directionality based on thermodynamics and simple heuristic 
rules [6-8]. Finally, methods are available for adjusting reaction reversibili-
ty/directionality constraints to fit model predictions to available experimental phe-
notype data [9, 10]. All of this work demonstrates the impact that small targeted 
changes to model reversibility constraints have on the accuracy of model predic-
tions. Here, we explore the impact of complete removal of reversibility constraints 
on the gene essentiality and growth phenotype predictions generated using three 
published genome-scale metabolic models: the iJR904 [4], the iAF1260 [11], and 
the iBsu1103 [6]. The iJR904 and iAF1260 are both metabolic models of E. coli 
K12. The iJR904 model includes 931 reactions encompassing 904 ORFs; the 
iAF1260 model is a substantial expansion over the iJR904, including 2059 reac-
tions and encompassing 1260 ORFs. The iBsu1103 model was created for B. sub-
tilis 168 and includes 1437 reactions encompassing 1103 ORFS. The iBsu1103 
model was optimized using the GrowMatch [9] method, in contrast to the E. coli 
models, which were manually optimized. This study is part of a larger study ex-
amining the impact of thermodynamic, regulatory, and reversibility constraints on 
the predictions from multiple genome-scale metabolic models. 

3. Methods 

3.1 Flux Balance Analysis (FBA) 

Flux balance analysis (FBA) is a constraint-based simulation method used to de-
fine the limits on the metabolic capabilities of a microorganism [12-14]. In FBA, 
the interior of the cell is assumed to be in a quasi-steady-state, meaning that the 
net production/ consumption of each internal metabolite is zero. Based on this as-
sumption, linear constraints are established on the flux through each reaction in-
volved in the organism metabolism. Reaction fluxes are further constrained based 
on knowledge of the reversibility and directionality of the metabolic reactions, de-
termined from thermodynamics [6-8]. A linear optimization is then performed 
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with these constraints, such that a given metabolic objective function (often cell 
growth [15]) is maximized subject to the mass balance constraints, the reversibili-
ty constraints, and the availability of nutrients in the media. Gene knockouts may 
also be simulated by blocking all flux through metabolic reactions that are asso-
ciated with the knocked out genes. Media conditions are set by restricting the 
compounds that can be consumed from the environment by the model reactions. 

3.2 Classification of Reactions Using Flux Variability Analysis 

Flux variability analysis (FVA) is an FBA-based method for characterizing the 
multiple feasible states of genome-scale metabolic models and for classifying the 
model reactions according to their behavior during simulated growth [16]. The 
reaction classification is derived from the minimization and maximization of flux 
through each model reaction while constraining the biomass production in the 
model to a minimal growth rate. Reactions with a minimum and maximum flux of 
zero are classified as blocked in the simulated conditions; reactions with a nega-
tive maximum flux or positive minimum flux are classified as essential in the si-
mulated conditions; and all other reactions are classified as active. 

4. Results 

4.1 Impact of Reversibility Constrains on Model Accuracy 

In order to study the effect of reversibility constraints on the accuracy of genome-
scale metabolic model predictions, two genome-scale metabolic models of E. coli 
K12 (iJR904 [4] and iAF1260 [11]) and one genome-scale metabolic model of B. 
subtilis 168 (iBsu1103 [6]) were utilized to predict the outcome of gene essentiali-
ty and Biolog growth phenotype experiments. These models were selected for 
analysis because they represent two of the most-well-studied prokaryotic organ-
isms, one gram positive and one gram negative. Also, genome-wide gene essen-
tiality and Biolog phenotyping array data are readily available for both of these 
organisms. Essentiality data is available for E. coli K12 in three distinct media 
conditions: Luria-Bertani media, glucose minimal media, and glycine minimal 
media [17, 18]. Essentiality data is also available for B. subtilis 168 in one culture 
condition: Luria-Bertani media [19].  
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The metabolic models were utilized to perform gene knockouts in silico, while 
simulating all culture conditions where experimental data is available. Knockouts 
were performed while enforcing and relaxing (by making all reactions reversible) 
the reversibility constraints included in each model. Predictions were then com-
pared with experimental data to assess accuracy with and without reversibility 
constraints (Table 1). In all three models, the accuracy of gene essentiality predic-
tions declined significantly with the relaxation of reversibility constraints, while 
the accuracy in predicting nonessential genes increased only for the iJR904 and 
iAF1260 models. This relaxation of reversibility constraints consists of making all 
model reactions reversible.  

Biolog phenotyping arrays [20] have also been constructed and utilized to study 
the ability of E. coli K12 and B. subtilis 168 to metabolize 324 and 242 distinct 
carbon, nitrogen, phosphate, and sulfate sources respectively. The iJR904, 
iAF1260, and iBsu1103 models were used to replicate these Biolog growth condi-
tions in silico, while enforcing and relaxing the reaction reversibility constraints; 
all predictions were then compared against the experimental Biolog data (Table 1). 
In these studies, the accuracy of all three models in predicting the metabolized Bi-
olog nutrients improved with the relaxation of reversibility constraints, while ac-
curacy in predicting un-metabolized nutrients declined. However, the improve-
ment in the prediction of metabolized nutrients was much more substantial for the 
iJR904 and iAF1260 models than for the iBsu1103 model. 

Table 1. Accuracy of Model Predictions with and without Reversibility Constraints 

 iJR904*  iAF1260*  iBsu1103*  
Reversibility constraints ON OFF ON OFF ON OFF 
Biolog conditions with 
growth  

77/194 
(40%) 

99/194 
(51%) 

114/194 
(59%) 

130/194 
(67%) 

138/169 
(82%) 

142/169 
(84%) 

Biolog conditions with no 
growth 

106/130 
(82%) 

79/130 
(61%) 

98/130 
(75%) 

71/130 
(55%) 

68/73 
(93%) 

50/73 
(68%) 

Essential metabolic genes 340/518 
(66%) 

229/518 
(44%) 

392/615 
(64%) 

99/615 
(16%) 

192/215 
(89%) 

166/215 
(77%) 

Non-essential metabolic 
genes 

2000/2137 
(94%) 

2057/2137 
(96%) 

3053/3165 
(95%) 

3155/3165 
(100%) 

873/888 
(98%) 

873/888 
(98%) 

Overall accuracy 82.1% 80.2% 89.1% 84.2% 94.5% 91.5% 
*Gene K.O. simulation results represent the aggregate of 3 media conditions (Luria-Bertani me-
dia, glucose minimal media, and glycine minimal media [17, 18]). 

4.2 Impact of Reversibility Constraints on Reaction Behavior 

Another measure of model quality is the number of inactive reactions in the mod-
el. Many reactions are supposed to be inactive during growth on certain condi-
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tions. For example, reactions involved in glycine metabolism should be inactive 
during growth on glucose minimal media. However, other reactions are inactive 
because they either exclusively lead to or are derived from a dead end in the meta-
bolic network.  

We utilized FVA to identify inactive reactions in the iJR904, iAF1260, and iB-
su1103 models during minimal simulated growth in complete media. In complete 
media, any transportable nutrient is allowed to be taken up by the cell, making it 
the least restrictive media condition possible. The advantage of performing FVA 
on complete media is that this enables as many reactions as possible to be active 
since no uptake pathways are blocked. Thus, reactions identified as inactive in 
complete media represent those reactions that will never carry flux because they 
exclusively lead to or are derived from a dead-end metabolite. In some cases, 
these dead-ends can be eliminated with the relaxation of reversibility constraints. 
To identify these dead-ends, we repeated the FVA reaction classification to identi-
fy reactions that are no longer inactive with reversibility constraints relaxed (Fig-
ure 1). In all three models, the number of inactive reactions declined substantially 
with the relaxation of the reversibility constraints. 
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Fig. 1. Number of inactive, active and essential reactions with reversibility constraints 
turned “ON” and “OFF” 
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5. Discussion 

The results of our analysis of the effect of reversibility constraints on the accuracy 
of model predictions demonstrated that complete relaxation of reversibility con-
straints always results in a substantial decline in accuracy. However, the results al-
so reveal that many cases where no growth is predicted and growth is observed 
(false negative predictions) can be corrected with the relaxation of reversibility 
constraints alone. More rigorous optimization techniques are available [9, 10] for 
identifying exactly which reactions should be made reversible to correct these 
predictions; however, this simple study provides a bulk estimate of how effective 
such efforts will be and it identifies the exact conditions on which such efforts 
should be applied. This study also reveals the correctly predicted zero-growth 
conditions that are vulnerable to being broken by the adjustment of reversibility 
constraints. Both pieces of information can be used to substantially simplify pro-
cedures for optimizing reaction reversibility constraints in models to fit experi-
mental data.  

Another interesting result can be derived from contrasting the effect of the rever-
sibility constraints on the iJR904 and iAF1260 models versus the iBsu1103 mod-
el. While in all three models, the number of false negative predictions declined 
with the relaxation of reversibility constraints, the decline was much more sub-
stantial in the E. coli models compared with the iBsu1103 model.  Meanwhile, the 
rise in false positive predictions with the relaxation of reversibility constraints was 
comparable in all three models. This ratio of errors corrected over errors created 
with the relaxation of reversibility constraints can be used as a measure of the ex-
tent to which a genome-scale metabolic model has been optimized. Thus, the re-
versibility rules in the iBsu1103 model, which was optimized during reconstruc-
tion using the GrowMatch method, show a greater extent of optimality compared 
with the reversibility rules in the iAF1260 and iJR904 models, which underwent 
manual optimization only. 
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